\(\int \frac {1-x^2}{1+5 x^2+x^4} \, dx\) [81]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 50 \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=-\frac {\arctan \left (\sqrt {\frac {2}{5+\sqrt {21}}} x\right )}{\sqrt {3}}+\frac {\arctan \left (\sqrt {\frac {1}{2} \left (5+\sqrt {21}\right )} x\right )}{\sqrt {3}} \]

[Out]

-1/3*arctan(x*2^(1/2)/(5+21^(1/2))^(1/2))*3^(1/2)+1/3*arctan(x*(1/2*7^(1/2)+1/2*3^(1/2)))*3^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {1177, 209} \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=\frac {\arctan \left (\sqrt {\frac {1}{2} \left (5+\sqrt {21}\right )} x\right )}{\sqrt {3}}-\frac {\arctan \left (\sqrt {\frac {2}{5+\sqrt {21}}} x\right )}{\sqrt {3}} \]

[In]

Int[(1 - x^2)/(1 + 5*x^2 + x^4),x]

[Out]

-(ArcTan[Sqrt[2/(5 + Sqrt[21])]*x]/Sqrt[3]) + ArcTan[Sqrt[(5 + Sqrt[21])/2]*x]/Sqrt[3]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 1177

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && GtQ[b^2
 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{6} \left (-3+\sqrt {21}\right ) \int \frac {1}{\frac {5}{2}-\frac {\sqrt {21}}{2}+x^2} \, dx-\frac {1}{6} \left (3+\sqrt {21}\right ) \int \frac {1}{\frac {5}{2}+\frac {\sqrt {21}}{2}+x^2} \, dx \\ & = -\frac {\tan ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {21}}} x\right )}{\sqrt {3}}+\frac {\tan ^{-1}\left (\sqrt {\frac {1}{2} \left (5+\sqrt {21}\right )} x\right )}{\sqrt {3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.74 \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=\frac {\left (7-\sqrt {21}\right ) \arctan \left (\sqrt {\frac {2}{5-\sqrt {21}}} x\right )}{\sqrt {42 \left (5-\sqrt {21}\right )}}+\frac {\left (-7-\sqrt {21}\right ) \arctan \left (\sqrt {\frac {2}{5+\sqrt {21}}} x\right )}{\sqrt {42 \left (5+\sqrt {21}\right )}} \]

[In]

Integrate[(1 - x^2)/(1 + 5*x^2 + x^4),x]

[Out]

((7 - Sqrt[21])*ArcTan[Sqrt[2/(5 - Sqrt[21])]*x])/Sqrt[42*(5 - Sqrt[21])] + ((-7 - Sqrt[21])*ArcTan[Sqrt[2/(5
+ Sqrt[21])]*x])/Sqrt[42*(5 + Sqrt[21])]

Maple [A] (verified)

Time = 0.05 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.70

method result size
risch \(-\frac {\sqrt {3}\, \arctan \left (\frac {x \sqrt {3}}{3}\right )}{3}+\frac {\sqrt {3}\, \arctan \left (\frac {x^{3} \sqrt {3}}{3}+\frac {4 x \sqrt {3}}{3}\right )}{3}\) \(35\)
default \(-\frac {2 \sqrt {21}\, \left (7+\sqrt {21}\right ) \arctan \left (\frac {4 x}{2 \sqrt {7}+2 \sqrt {3}}\right )}{21 \left (2 \sqrt {7}+2 \sqrt {3}\right )}-\frac {2 \left (-7+\sqrt {21}\right ) \sqrt {21}\, \arctan \left (\frac {4 x}{2 \sqrt {7}-2 \sqrt {3}}\right )}{21 \left (2 \sqrt {7}-2 \sqrt {3}\right )}\) \(82\)

[In]

int((-x^2+1)/(x^4+5*x^2+1),x,method=_RETURNVERBOSE)

[Out]

-1/3*3^(1/2)*arctan(1/3*x*3^(1/2))+1/3*3^(1/2)*arctan(1/3*x^3*3^(1/2)+4/3*x*3^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.62 \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (x^{3} + 4 \, x\right )}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} x\right ) \]

[In]

integrate((-x^2+1)/(x^4+5*x^2+1),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(x^3 + 4*x)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*x)

Sympy [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.84 \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=- \frac {\sqrt {3} \cdot \left (2 \operatorname {atan}{\left (\frac {\sqrt {3} x}{3} \right )} - 2 \operatorname {atan}{\left (\frac {\sqrt {3} x^{3}}{3} + \frac {4 \sqrt {3} x}{3} \right )}\right )}{6} \]

[In]

integrate((-x**2+1)/(x**4+5*x**2+1),x)

[Out]

-sqrt(3)*(2*atan(sqrt(3)*x/3) - 2*atan(sqrt(3)*x**3/3 + 4*sqrt(3)*x/3))/6

Maxima [F]

\[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=\int { -\frac {x^{2} - 1}{x^{4} + 5 \, x^{2} + 1} \,d x } \]

[In]

integrate((-x^2+1)/(x^4+5*x^2+1),x, algorithm="maxima")

[Out]

-integrate((x^2 - 1)/(x^4 + 5*x^2 + 1), x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.52 \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=\frac {1}{6} \, \sqrt {3} {\left (\pi \mathrm {sgn}\left (x\right ) - 2 \, \arctan \left (\frac {\sqrt {3} {\left (x^{2} + 1\right )}}{3 \, x}\right )\right )} \]

[In]

integrate((-x^2+1)/(x^4+5*x^2+1),x, algorithm="giac")

[Out]

1/6*sqrt(3)*(pi*sgn(x) - 2*arctan(1/3*sqrt(3)*(x^2 + 1)/x))

Mupad [B] (verification not implemented)

Time = 13.14 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.62 \[ \int \frac {1-x^2}{1+5 x^2+x^4} \, dx=\frac {\sqrt {3}\,\left (\mathrm {atan}\left (\frac {\sqrt {3}\,x^3}{3}+\frac {4\,\sqrt {3}\,x}{3}\right )-\mathrm {atan}\left (\frac {\sqrt {3}\,x}{3}\right )\right )}{3} \]

[In]

int(-(x^2 - 1)/(5*x^2 + x^4 + 1),x)

[Out]

(3^(1/2)*(atan((4*3^(1/2)*x)/3 + (3^(1/2)*x^3)/3) - atan((3^(1/2)*x)/3)))/3